2. Магнитное взаимодействие токов в вакууме. Закон Ампера







Скачать 72.91 Kb.
Название2. Магнитное взаимодействие токов в вакууме. Закон Ампера
Дата публикации19.01.2015
Размер72.91 Kb.
ТипЗакон
p.120-bal.ru > Документы > Закон



Лекция №5

Электромагнетизм

  1. Природа магнетизма.

  2. Магнитное взаимодействие токов в вакууме. Закон Ампера.

  3. Напряженность магнитного поля. Формула Ампера. Закон Био-Савара-Лапласа.

  4. Диа-, пара- и ферромагнитные вещества. Магнитная проницаемость и магнитная индукция.

  5. Магнитные свойства тканей организма.


1. Вокруг движущихся электрических зарядов (токов) возникает магнитное поле, посредством которого эти заряды взаимодействуют с магнитными или другими движущимися электрическими зарядами.

Магнитное поле является силовым полем, его изображают посредством магнитных силовых линий. В отличие от силовых линий электрического поля магнитные силовые линии всегда замкнуты.

Магнитные свойства вещества обусловлены элементарными круговыми токами в атомах и молекулах этого вещества.
2. Магнитное взаимодействие токов в вакууме. Закон Ампера.

Магнитное взаимодействие токов изучалось с помощью подвижных проволочных контуров. Ампер установил, что величина силы взаимодействия двух малых участков проводников 1 и 2 с токами пропорциональна длинам и этих участков, силам тока I1 и I2 в них и обратно пропорциональна квадрату расстояния r между участками:

~ (1)



Выяснилось, что сила воздействия первого участка на второй зависит от их взаиморасположения и пропорциональна синусам углов и .

~ (2)

Где -угол между и радиусом –вектором r12 , соединяющим с , а -угол между и нормалью n к плоскости Q, содержащей участок и радиус –вектор r12.

Объединяя (1) и (2) и вводя коэффициент пропорциональности k, получим математическое выражение закона Ампера:

(3)

Направление силы также определяется по правилу буравчика: оно совпадает с направлением поступательного движения буравчика, рукоятка которого вращается от к нормали n1.

Элементом тока называется вектор, равный по величине произведению Idl бесконечно малого участка длины dl проводника на силу тока I в нем и направленный вдоль этого тока. Тогда, переходя в (3) от малых к бесконечно малым dl, можно записать закон Ампера в дифференциальной форме:

(4)



Коэффициент k можно представить в виде

, (5)

где -магнитная постоянная(или магнитная проницаемость вакуума)

Величина для рационализации с учетом (5) и (4) запишется в виде

(6)

3. Напряженность магнитного поля. Формула Ампера. Закон Био-Савара-Лапласа.

Поскольку электрические токи взаимодействуют друг с другом посредством своих магнитных полей, количественную характеристику магнитного поля можно установить на основе этого взаимодействия-закона Ампера. Для этого проводник l с током I разобьем на множество элементарных участков dl. Он создает в пространстве поле.

В точке О этого поля, находящуюся на расстоянии r от dl, поместим I0dl0. Тогда, согласно закону Ампера (6), на этот элемент будет действовать сила

(7)
Где -угол между направлением тока I на участке dl (создающем поле) и направлением радиуса-вектора r, а -угол между направлением тока I0dl0 и нормалью n к плоскости Q содержащей dl и r.

В формуле (7) выделим часть, не зависящую от элемента тока I0dl0, обозначив ее через dH:

-закон Био-Савара-Лапласа (8)

Величина dH зависит только от элемента тока Idl, создающего магнитное поле, и от положения точки О.

Величина dH является количественной характеристикой магнитного поля и называется напряженностью магнитного поля. (8) в (7)

(9)

Где - угол между направлением тока I0 и магнитного поля dH. Формула (9) называется формулой Ампера, выражает зависимость силы, с которой магнитное поле действует на находящийся в нем элемент тока I0dl0 от напряженности этого поля. Эта сила расположена в плоскости Q перпендикулярно dl0. Ее направление определяется по «правилу левой руки».

Полагая в (9) =90º, получим

(9’)

Т.е. напряженность магнитного поля направлена по касательной к силовой линии поля, а по величине равна отношению силы, с которой поле действует на единичный элемент тока, к магнитной постоянной.
4. Диамагнитные, парамагнитные и ферромагнитные вещества. Магнитная проницаемость и магнитная индукция.

Все вещества, помещенные в магнитное поле, приобретают магнитные свойства, т.е. намагничиваются и поэтому изменяют внешнее поле. При этом одни вещества ослабляют внешнее поле, а другие усиливают его. Первые называются диамагнитными, вторые –парамагнитными веществами. Среди парамагнетиков резко выделяется группа веществ, вызывающих очень большое усиление внешнего поля. Это ферромагнетики.

Диамагнетики - фосфор, сера, золото, серебро, медь, вода, органические соединения.

Парамагнетики- кислород, азот, алюминий, вольфрам, платина, щелочные и щелочноземельные металлы.

Ферромагнетики – железо, никель, кобальт, их сплавы.
Геометрическая сумма орбитальных и спиновых магнитных моментов электронов и собственного магнитного момента ядра образует магнитный момент атома (молекулы) вещества.

У диамагнетиков суммарный магнитный момент атома (молекулы) равен нулю, т.к. магнитные моменты компенсируют друг друга. Однако под влиянием внешнего магнитного поля у этих атомов индуцируется магнитный момент, направленный противоположно внешнему полю. В результате диамагнитная среда намагничивается и создает собственное магнитное поле, направленное противоположно внешнему и ослабляющее его.



Индуцированные магнитные моменты атомов диамагнетика сохраняются до тех пор, пока существует внешнее магнитное поле. При ликвидации внешнего поля индуцированные магнитные моменты атомов исчезают и диамагнетик размагничивается.

У атомов парамагнетиков орбитальные, спиновые, ядерные моменты не компенсируют друг друга. Однако атомные магнитные моменты расположены беспорядочно, поэтому парамагнитная среда не обнаруживает магнитных свойств. Внешнее поле поворачивает атомы парамагнетика так, что их магнитные моменты устанавливаются преимущественно в направлении поля. В результате парамагнетик намагничивается и создает собственное магнитное поле, совпадающее с внешним и усиливающим его.

При ликвидации внешнего поля под действием теплового движения ориентация магнитных моментов атома нарушается и парамагнетик размагничивается.



Результирующая напряженность магнитного поля в веществе H’ равна

(1)

Где -напряженность поля, создаваемого самой средой. Знак (+) берется для парамагнетиков, (-) для диамагнетиков. Поскольку ~H, то

(2)

Где -магнитная проницаемость среды, которая характеризует ее способность намагничиваться под влиянием внешнего поля.

Магнитное поле в веществе принято характеризовать индукцией магнитного поля

(3),

где 0-магнитная постоянная. Или (4), где

-абсолютная магнитная проницаемость среды.

В вакууме =1, , а

В ферромагнетиках имеются области (~10-2см) с одинаково ориентированными магнитными моментами их атомов. Однако ориентация самих доменов разнообразна. Поэтому в отсутствие внешнего магнитного поля ферромагнетик не намагничен.

С появлением внешнего поля домена, ориентированные в направлении этого поля, начинают увеличиваться в объеме за счет соседних доменов, имеющих иные ориентации магнитного момента; ферромагнетик намагничивается. При достаточно сильном поле все домены переориентируются вдоль поля и ферромагнетик быстро намагничивается до насыщения.



При ликвидации внешнего поля ферромагнетик полностью не размагничивается, а сохраняет остаточную магнитную индукцию, так как тепловое движение может разориентировать домены. Размагничивание может быть достигнуто нагреванием, встряхиванием или приложением обратного поля.

При температуре равной точке Кюри, тепловое движение оказывается способным дезориентировать атомы в доменах, вследствие чего ферромагнетик превращается в парамагнетик.

Поток магнитной индукции через некоторую поверхность S равен числу линий индукции, пронизывающих эту поверхность:

(5)

Единица измерение B –Тесла, Ф-Вебер.
5. Магнитные свойства тканей организма. Физические основы магнитобиологии.
Ткани организма диамагнитны, подобно воде. Однако в организме имеются и парамагнитные вещества, молекулы и ионы. Ферромагнитных частиц в организме нет. Биотоки, возникающие в организме, являются источником слабых магнитных полей. В некоторых случаях индукцию таких полей удается измерить. Так, например, на основании временной зависимости индукции магнитного поля сердца создан диагностический метод-магнитокардиография.

Магнитное поле оказывает воздействие на биологические системы, которые в нем находятся. Это воздействие изучает магнитобиология.

Имеются сведения о гибели дрозофилы в неоднородном магнитном поле, морфологических изменениях в живых организмах после пребывания в постоянном магнитном поле, о влиянии магнитного поля на нервную систему и изменение характеристик крови и т.д.
Примеры решения задач

  1. Два длинных горизонтальных провода с током расположены параллельно друг другу на расстоянии r=8мм один от другого, причем верхний провод закреплен жестко, а нижний свободно висит в воздухе. Какой силы I1 и какого направления ток должен для этого течь по верхнему проводу, если по нижнему идет ток I2=1А?Вес одного метра длины нижнего провода Р=2,5Н/м.


Решение:

Очевидно, что нижний провод будет свободно висеть только в том случае, если его вес Р компенсируется силой F притяжения со стороны верхнего провода, ток в котром должен иметь такое же направление, как и в нижнем проводе. Поэтому, обозначив длину провода через l, можно записать

F=P=pl,

Или , где , тогда



  1. Вблизи экватора магнитное поле Земли горизонтально и его индукция В=0,25Тл. Проводник с током 12А расположен в направлении восток-запад и имеет длину 1км. Чему равна сила, с которой магнитное поле Земли действует на этот проводник?

Решение:



  1. По двум длинным прямолинейным проводам находящимся на расстоянии 5 см друг от друга в воздухе, текут токи по 10 А в каждом. Определить В между проводами, если токи текут в одном направлении.

Решение:

(1)


Добавить документ в свой блог или на сайт

Похожие:

2. Магнитное взаимодействие токов в вакууме. Закон Ампера iconСамостоятельная работа. 10 класс. «Магнитное поле. Сила Ампера»
По какому из приведенных ниже правил можно определить направление вектора индукции магнитного поля прямого и кругового токов?

2. Магнитное взаимодействие токов в вакууме. Закон Ампера iconПлан Понятие магнитного поля. Закон Ампера. Магнитная индукция. Сила...
Циркуляция вектора магнитной индукции. Закон полного тока (теорема о циркуляции магнитного поля в вакууме). Применение закона полного...

2. Магнитное взаимодействие токов в вакууме. Закон Ампера iconКалендарно-тематическое планирование 11 класс
Взаимодействие токов. Магнитное поле. Свойства магнитного поля. Вектор магнитной индукции. Силовые линии магнитной индукции

2. Магнитное взаимодействие токов в вакууме. Закон Ампера iconМетодические указания по теме «Магнитное поле постоянного тока»
Покоящиеся заряды взаимодействуют посредством электрического поля. При движении зарядов это взаимодействие сохраняется, однако помимо...

2. Магнитное взаимодействие токов в вакууме. Закон Ампера iconМагнитное поле тока. Магнитная индукция. Магнитный поток. Закон Ампера....
Сформировать представление о магнитном поле как виде материи; ознакомить учащихся с графическим методом представления структуры магнитного...

2. Магнитное взаимодействие токов в вакууме. Закон Ампера iconТема Количество часов
Техника безопасности в кабинете физики. Магнитное поле токов. Магнитная индукция

2. Магнитное взаимодействие токов в вакууме. Закон Ампера iconПлан Магнитное поле и его характеристики: магнитная индукция и напряжённость...
Закон полного тока для магнитного поля в вакууме. Непотенциальность магнитного поля. Применение закона полного тока для расчёта поля...

2. Магнитное взаимодействие токов в вакууме. Закон Ампера iconПлан Магнитное поле, его характеристики. Силовые линии магнитной...
...

2. Магнитное взаимодействие токов в вакууме. Закон Ампера iconРешение: F=BIlsin -закон Ампера

2. Магнитное взаимодействие токов в вакууме. Закон Ампера iconФизика
Магнитное взаимодействие. Явления взаимного притяжения разноименных и отталкивания одноименных электрических зарядов во многом сходны...

Вы можете разместить ссылку на наш сайт:
Право





При копировании материала укажите ссылку © 2015
контакты
p.120-bal.ru
Поиск